
OpenSatKit – 2.0

OpenSatKit (OSK)

Quick Start Guide

OpenSatKit – 2.0 2

Introduction

• The primary goal of OpenSatKit (OSK) is to provide a core Flight System
(cFS) development and run time environment that can be used to learn
about the cFS and to serve as a starting point for a new project

• In addition to the cFS itself, OSK uses two additional open source
applications

– Ball Aerospace’s COSMOS command and control platform for
embedded systems

– NASA Goddard’s 42 dynamic simulator

• Each open source package is contained in its own OpenSatKit subdirectory

COSMOS
Command & Control

42
Simulator

cFS on
Linux

Commands

Simulated
Hardware
Cmd & Tlm

Telemetry

OpenSatKit – 2.0 3

Approach

• OSK comes with the cFS pre-configured for a fictitious satellite called
SimpleSat (SimSat).

– The cFS can be used for many different types of embedded systems. A spacecraft was
chosen due to the increased usage of the cFS on CubeSats

• OSK implements extensive COSMOS configurations and customizations so
COSMOS can serve as the primary OSK user interface

• OSK is arranged with the following user progression in mind

1. Learn the cFS using SimSat to provide a context and working examples

2. Manage and develop applications within the Linux desktop environment

a. Add apps by creating new apps or importing from the app library

b. Configure runtime app suite

3. Extend OSK

a. Deploy the cFS to a target system

i. Run benchmarks

ii. Use OSK as a ground system for a remote system

b. Advanced application development and extensions

i. External Code Interface (ECI), ROS2 bridge, etc.

OpenSatKit – 2.0 4

Running OpenSatKit (1 of 2)

•Open a terminal window (Ctrl-Alt-t)

•Navigate to the base directory where you installed OSK

•Change directory to cosmos

– [~] cd opensatkit-master/cosmos

•Start COSMOS

– [~/OpenSatKit/cosmos]ruby Launcher
– You’ll see a screen similar to the right.

• Select <OK>

• This creates the “Launcher” screen shown

on the next slide

OpenSatKit – 2.0 5

Running OpenSatKit (2 of 2)

• Each tools on the COSMOS “Launcher” runs as a
separate Linux process with a Graphical User
Interface (GUI)

• Shaded tool titles indicate the COSMOS tools
used by OSK

– You do not have to invoke these tools directly

– OSK screens launch COSMOS tools as they are
needed to perform a task

– A backup slide shows a COSMOS architectural view
with the data flows between tools

• Select “OpenSatKit” with a single click

– This launches COSMOS’s Command and Telemetry
Server, Telemetry Viewer, and displays OSK’s main
window

– You can minimize the COSMOS tools, but don’t
close them

• A picture of OSK’s main window follows 2
slides that briefly describe each COSMOS tool

OpenSatKit – 2.0 6

COSMOS Tool Summary (1 of 2)

• Launcher

– Provides a graphical interface for launching each of the tools that make up the COSMOS system

– Custom OSK ICON “cFS Starter Kit” launches OSK’s main page

• Command and Telemetry Server

– Connects COSMOS to targets for real-time commanding and telemetry processing.

– All real-time COSMOS tools communicate with targets through the Command and Telemetry
Server ensuring that all communications are logged.

– Localhost 127.0.0.1 used as cFS connection Targets created

• Telemetry Viewer

– Provides a way to organize telemetry points into custom “screens” that allow for the creation of
unique and organized views of telemetry data.

• Command Sender

– Individually send any FSW command using GUI form

– Raw data files can be used to inject faults

– OSK provides custom menus for common cFS commands

• Packet Viewer

– View any telemetry packet with no extra configuration necessary

– OSK provides custom telemetry screens functionally organized

OpenSatKit – 2.0 7

COSMOS Tool Summary (2 of 2)

• Telemetry Grapher

– Real-time or offline graphing of any FSW telemetry point

– OSK provides convenient access through some of its custom screens

• Table Manager

– Edit and display binary files

– OSK provides definitions for most of the cFE binary files and a limited number of cFS application binary
files

• Script Runner

– Develop and execute test procedures using Ruby Scripts and COSMOS APIs

– OSK provides additional APIs for functions like file transfer and binary file management

• Test Runner

– Test framework for organizing, executing, and verifying test scripts

– Currently OSK only includes some prototype scripts. The goal is to provide a complete test suite that can
be extended by the user.

OpenSatKit – 2.0 8

Main OSK Window

• Three tabs Explore cFS/SimSat, Manage Apps, and Extend OSK provide the top-level organization
• Explore cFS/SimSat allows the user to learn the cFS using SimSat
• Manage Apps provides tools for adding, removing, and creating apps
• Extend OSK is in its infancy, but it’s goal is to allow the user to bridge the cFS to other systems

and control remote devices

Tabs

Explore 5 cFE
services

Explore apps
arranged in

functional groups

A few high level
system-oriented

commands

Launch scripts in
script Runner

OpenSatKit – 2.0 9

Start the Flight Software (FSW)

•Click <Start cFS> to run the FSW. <Start cFS/42> is used later.

– A new terminal window is created for the Linux process running the cFS

– Enter “osk” when prompted for a password.

•In a few seconds the time box should turn white time with
advancing

– If time doesn’t advance click <Send Config Cmd> “ENA_TLM”

OpenSatKit – 2.0 10

What Just Happened?

•The <Start cFS> button invoked a ruby script that created a new
terminal window executing the “cFS Framework”

•The cFS Framework is the bottom two layers of the 3-tiered cFS
architecture. It is a portable application runtime environment that
uses a startup script (cfe_es_startup.scr) to determine which apps to
load during initialization. OSK’s startup script is configured for
SimSat.

OS

Abstraction

Layer API

Platform

Support

Package API

core Flight Executive (cFE)

cFS
Apps

& Libs

OSK
Apps

& Libs

Linux OSAL Linux PSP

Application

Service

Platform

cFS
Framework

OpenSatKit – 2.0 11

Core Flight Executive (cFE)

• The cFE has 5 services

– Executive Services (ES): Manage the embedded software system and
create an application runtime environment

– Time Services (TIME): Manage spacecraft time

– Event Services (EVS): Provide a service for sending, filtering, and logging
event messages (time stamped text messages).

– Software Bus (SB) Services: Provide an application publish/subscribe
messaging service

– Table Services (TBL): Manage application binary file table images

One button/screen
for each service

cFE HTML User’s
Guide

OpenSatKit – 2.0 12

cFE Service Screen (1 of 2)

• Table Service screen shown. All cFE screens have the same layout but may not
have every component/button

Select and send commands

Display a telemetry packet using COSMOS’s
Packet Viewer.
• Telemetry packets can be generated in response

to a command
• E.g. Telemeter the registration information for a

single table

Display a binary file using COSMOS’s Table
Manager
• Binary files can be generated in response to a

command.
• E.g. Dump the entire table registry to a file

Display a screen that simplifies user interaction
with a service

OpenSatKit – 2.0 13

cFE Service Screen (2 of 2)

Select and run a demo
• Demos are a sequence of interactive screens that

step the user through a task

Each service generates a periodic “housekeeping”
telemetry packet every few seconds
• The ‘Status’ section displays a portion of the

housekeeping packet
• The entire packet can be displayed using the

<Display Tlm> button in the Ground Interface
section

Select and run a tutorial
• Tutorial are typically, but not limited to a set of

slides coupled with a ruby script for exercises

OpenSatKit – 2.0 14

Simple Satellite (SimSat)

• SimSat provides a reference mission to provide context to

– Illustrate what applications are required and how they are configured and integrated as a system to meet
the requirements

– Demonstrate an example integration test script

– Demonstrate an operational script

• This does not include

– Porting SimSat to a new platform

– Integrating hardware devices

• SimSat is a

– Low Earth Orbit (LEO) satellite with one nadir-pointing science instrument

– The instrument has

• A detector that produces 10 bytes of data per second

• A power the following sequence: Apply power, wait for instrument initialization (~20s), and
command to enable science

– The science team requires

• A 1Hz auxiliary spacecraft data containing time, attitude, orbit data, and instrument status

• Start science during a ground contact. Can be automated but ops prefers to monitor instrument
health.

– Ground contact resources/schedule are preplanned

• Implies autonomous operations can be loaded on board using stored commands

– FSW must autonomously monitor instrument health and power off the instrument in the event of a fault

OpenSatKit – 2.0 15

SimSat Applications (1 of 3)

Software Bus: Inter-app message router

Stored

Command

Memory

Manager
Health

&

Safety

Limit

Checker

Checksum
Memory

Dwell

Data

Storage
File

Manager

TFTP

Kit

Scheduler

Kit

Command

Ingest

Kit

Telemetry

Output

42

Interface

(I42)

COSMOS
Ground System

42 FSW

Controller

(F42)cFSOSK

42
Simulator

Instrument

Simulator

(isim)

File
System

Autonomy

Run Time

Environment

Data/File Management

Maintenance

House

Keeping

Health & Safety

Attitude

Determination

and

Control

OpenSatKit – 2.0 16

SimSat Applications (2 of 3)

• The previous slide shows a cFS “bubble” chart where each app is a bubble
and they communicate via messages on the software bus.

– The blue cFS apps are reusable open source apps that are available on
https://github.com/nasa/xx where ‘xx’ is the abbreviated app name

– The green OSK apps were written specifically for OSK

– The external COSMOS and 42 interfaces use UDP and TCP respectively

• Apps are designed to perform a dedicated function with clear interfaces and
they operate in groups to achieve higher level mission objectives

• Runtime Environment Apps

– Kit Command Ingest (KIT_CI) receives CCSDS command packets from COSMOS
and sends them on the Software Bus

– Kit Telemetry Output (KIT_TO) reads CCSDS telemetry packets from the Software
Bus and sends them to COSMOS

– Kit Scheduler (KIT_SCH) contains tables that define when to send messages on the
Software Bus

• Apps can use these messages to perform synchronous activities, e.g. sending
their housekeeping status packet

https://github.com/nasa/xx

OpenSatKit – 2.0 17

SimSat Applications (2 of 3)

• Data/File Management

– File Manager (FM) provides a ground interface for performing common directory
and file operations

– Data Storage (DS) reads packets from the software bus and writes them to files
according to table-defined

– Housekeeping (HK) creates new telemetry packets from pieces of other telemetry
packets. The new packets are written to the SB and can be stored and/or
telemetered.

– Trivial File Transfer Protocol (TFTP) transfers files between the flight and ground
COSMOS. There’s an open source CCSDS File Delivery Protocol (CFDP) app that
will be added in a future release.

• Autonomy

– Limit Checker (LC) monitors one or more telemetry values and start stored
command relative time sequences (RTSs) in response to limit violations

– Stored Command (SC) Provides services to execute preloaded, table-defined
command sequences at predetermined absolute or relative time intervals

OpenSatKit – 2.0 18

SimSat Applications (3 of 3)

• Attitude Determination and Control Apps

– 42 Interface (I42) manages a TCP/IP connection to 42 and transfers actuators/sensor
packets to/from 42

– 42 FSW (F42) Implements the “ThreeAxisFsw” attitude control algorithm defined in 42

• Maintenance

– Memory Dwell (MD) creates telemetry packets containing contents of memory
location specified in dwell tables

– Memory Manager (MM) provides read/write access to memory

• Health & Safety

– Checksum (CS) monitors checksums across table-defined static code/data regions and
reports errors

– Health & Safety (HS) monitors table-defined application check-in and event messages
and reporting errors and/or starting a RTS to address the issue

OpenSatKit – 2.0 19

SimSAt Application Screens

•Each functional application group screen uses the following layout

Quick access to each app’s
commands, telemetry, and
user’s guide
• Binary Tables & Files

coming soon

Convenient functional
screens for most common
commands and relevant
status. Listed at end of
slide deck.

Launch demos (pre-
defined screen sequences)
and tutorials (slides and/or
scripts)

OpenSatKit – 2.0 20

SimSat Integration Script

•Integration Scripts

•Operational Scripts

• Runs test script using Script Runner

• Issues Noop command to every application and verifies telemetry response

OpenSatKit – 2.0 21

SimSat Operational Script

•Integration Scripts

•Operational Scripts

OpenSatKit – 2.0 22

Configuration and Convention
Notes

OpenSatKit – 2.0 23

COSMOS Configuration (1 of 2)

•COSMOS Target (OpenSatKit/cosmos/config/targets)

– Architectural component, typically on an embedded system, that COSMOS
can send commands to and receive telemetry from

– For each target users can define command packets, telemetry packets,
screens, and Ruby scripts.

– Each FSW application is defined as a target

– OSK defines a virtual target CFS_KIT to serve as the User’s primary interface

•OSK scripts in OpenSatKit/cosmos/lib extend COSMOS scripting API

– API documentation is under development. See code for details

OpenSatKit – 2.0 24

COSMOS Configuration (2 of 2)

•OSK specific directories defined in OpenSatKit/cosmos/cfs_kit

– /docs: cFE and OSK documentation

– /file_server: Default location for file transferred to/from FSW

• /table subdirectory contains table files

• COSMOS Table Manager file formats defined in
/cosmos/config/tools/TableManager

– /tools: cFE and OSK standalone tools

– /tutorials: Tutorial files

OpenSatKit – 2.0 25

Minor Inconveniences (1 of 2)

•OSK is a work in progress with a few known issues that you can ignore

•If you cancel an OSK dialogue you may see the follow COSMOS error
dialogue.

•The FSW terminal window may display start and stop “FlyWheel”
messages

– OSK is a non-realtime environment so the cFE time service is warning that’s it’s
not operating within its real-time precision limits relative to a 1Hz timer

– OSK is designed to help users learn functional features and only requires
reasonable timing performance in order for the scheduler to execute its
schedule correctly

OpenSatKit – 2.0 26

Minor Inconveniences (2 of 2)

•Some cFS binary files are variable length. The Table Manager
definition files support fixed length files, therefore you may see an error
dialog stating the file doesn’t contain all of the records. This message is
from cFE Executive Service Task Information file.

OpenSatKit – 2.0 27

OSK Conventions

•Most cFE services have commands that can generate a telemetry as part
of the response or write information to a file

– The verbs list and send indicate information is sent in a telemetry
packet.

– Write is used when information is written to a file

•The FSW directory /cf (compact flash) is used as the default location for
onboard file creation and flight-ground file transfers

– This is mapped to OpenSatKit/cfs/build/exe/cpu1/cf

•OpenSatKit/cosmos/cfs_kit/file_server is used as the default ground file
location

– Table are located in the tables subdirectory

•OSK often uses osk_tmp_bin.dat as a standard temporary binary file
name to avoid clutter

•OSK does not “cheat” when working with ground and flight tables

– Files are transferred between flight and ground locations and not
accessed via shared locations within the VM

OpenSatKit – 2.0 28

Running SimSat
with 42

OpenSatKit – 2.0 29

Tools: Preparing 42 Simulation

• From the kit main page on the previous
slide select <42 Simulator> and the
screen to the left will appear.

• The 2nd row of buttons allow you to
change the behavior of the control
algorithms running in the FSW and are
described on the next slides

• Before running the sim you will open
some additional windows that will be
used for your class exercise

– Manage Control Table

– Plot Attitude Errors

OpenSatKit – 2.0 30

42 Sim: Manage Control Table

• Selecting <Manage Control Table> on the
42 Sim screen produces the screen to the
left.

• Select <Get Current Values> and it will
populate the screen with the current control
table values. This takes a little time because it is
transferring a file from flight to ground

• Edit the screen as desired and click <Load
Screen Values> to replace the current control
table values

• The defaults can be restored by clicking
<Restore Defaults>

OpenSatKit – 2.0 31

42 Sim: Plot Attitude Errors

• Selecting <Plot> button next to the attitude errors produces the screen below

Started Sim

Restored DefaultsUpload Bad Gains

OpenSatKit – 2.0 32

42 Sim: Starting the Simulation

• Select <Run 42 Sim> which will start the
42 simulator in a new terminal window.

• The 42 configuration files used in the
simulation are located in directory
OpenSatKit/42/OSK

• The simulation takes a while to initialize

OpenSatKit – 2.0 33

42 Sim: Additional Configuration Options

• The kit includes two additional configuration options that can be manipulated

1. Wheel target Momentum

2. Sun Valid Configuration

OpenSatKit – 2.0 34

42 Sim: Set Wheel Target Momentum

• The controller allows a non-zero (default)
momentum to be stored in the wheels

• Enter new values and click <Send> to
change the values

• The plot below shows a jump in
momentum errors when new targets
were selected

OpenSatKit – 2.0 35

42 Sim: Configure SunValid

• Selecting <Config SunValid> to override the current sun valid flag

• The plot below shows gimbal command

– The linear portion had a valid sun and the bend occurred when the
SunValid was overridden to false.

OpenSatKit – 2.0 36

42 Sim: Termination

1. Click <Disconnect 42> to end a 42 simulation that is running with the FSW

2. To terminate the flight software click on the terminal window with the FSW messages and
then enter ctrl-c

3. Each of the cosmos windows will need to be closed individually. If you close the COSMOS
TlmViewer window first it prompt you to close all of the telemetry screens at once.

OpenSatKit – 2.0 37

Manage Applications

OpenSatKit – 2.0 38

Tools: Create Application

•Seven quick steps and a new app is created and integrated into the kit

See next
slide

OpenSatKit – 2.0 39

Tools: Create Application

• Follow the instructions in the center of the dialogue. Create app generates the
fsw source/make files, the cosmos target, and edits the COSMOS cmd-tlm-
server config file.

• <Install App> has not been implemented. Follow the instructions on the
previous slide

OpenSatKit – 2.0 40

Kit App Integration

•Goal is to provide easy access to COSMOS, KIT_TO, and KIT_SCH
to integrate a new app

OpenSatKit – 2.0 41

Extending
OSK

OpenSatKit – 2.0 42

Tools: Benchmarks

Coming Soon…

OpenSatKit – 2.0 43

Tools: Performance Monitor

• Capture FSW performance data using screen

• Download file and <Launch Analysis Tool>

OpenSatKit – 2.0 44

Tools: PiSat Control

•This requires a PiSat which is currently not in the
public domain

OpenSatKit – 2.0 45

Demos

OpenSatKit – 2.0 46

Demo Structure – FM Example (1 of 2)

•Each demo follows a common user screen configuration

Description of
current step

Button usage
description

OpenSatKit – 2.0 47

Demo Structure – FM Example (2 of 2)

<More Info> provides
detailed context-specific
information

OpenSatKit – 2.0 48

Application
Functional Screens

OpenSatKit – 2.0 49

File Management

• <List to Packet> commands File Manage (FM)
– To send a directory listing
– The command uses a directory listing

alphabetical “offset” to determine which file to
start with in the listing

• OSK uses the verbs list and send to indicate
information is sent in a telemetry packet.

• Write is used when information is written to a file

• <List to Packet> commands File Manage (FM)
– To send a directory listing
– The command uses a directory listing

alphabetical “offset” to determine which file to
start with in the listing

OpenSatKit – 2.0 50

Table Management

• <Display Registry> sends a table’s registry
information in a telemetry packet

• Load a new FSW table
<Put File> transfers file from ground to flight
<Load Table> into table buffer
<Validate> table via app validation function
<Activate> new table

• Dump and display FSW table
<Dump Table> to onboard file
<Get File> transfers file from flight to ground
<Display Table> launches COSMOS Table
Manager to view file. Requires binary file
definition.

OpenSatKit – 2.0 51

Memory Management

• Memory Manager (MM) and Memory Dwell
(MD) apps are typically used for inflight
maintenance.

• MM commands allow direct access to any
memory location

• MD generates telemetry packets that contain
the contents of table-specified memory
locations

– Only 1 dwell table telemetry packet is
defined

– <Jam Dwell Table> allows the dwell
table to be loaded without using the
table load service

• The FSW can easily be corrupted using
memory manager

• The memory management demo is a good
place to start since it demonstrates MM and
MD using safe memory locations

OpenSatKit – 2.0 52

Recorder Management

OpenSatKit – 2.0 53

Autonomy Management

OpenSatKit – 2.0 54

Application Management

• <Get App Info> commands cFE executive
services to send a telemetry packet with the
command-specified app

• <App/Task Registry> commands cFE
executive services to write app or task
information to a file that can be transferred
to ground via a <Get File>

OpenSatKit – 2.0 55

COSMOS
Extras

OpenSatKit – 2.0 56

= Used by OSK

